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Abstract 

A hybrid renewable energy system (HRES) uses several kinds of sources, including wind and solar, to make better use of the 

natural resources in standalone applications. A common application of HRES is in remote communities, where interconnected 

electrical grid is unreachable due to economics and physical reasons. Due to the long distance and difficult access to these 

isolated areas, electrical generation systems used in these applications must be reliable. And the reliability of the system, 

especially the inverter used to regulate the AC voltage, is one of the main problems associated to these systems, and it is 

responsible for the lack of confidence in renewable systems at several locations in Brazil. This paper shows the results of using 

renewable hybrid systems specially designed for isolated areas, focusing attention on reliability, efficiency and expansion 

flexibility. It presents the system description, mode of operation, inverter design, and experimental results measured in a pilot 

plant located in Lençóis Island, a small isolated community in the north region of Brazil.   

 

1. INTRODUCTION 

The supply of electricity to isolated communities in Brazil and other developing countries, in general, is still done in a 

precarious way, using diesel generators, which operate for 3 to 4 hours a day [1], [2]. This has happened mostly due to the high 

cost associated with the expansion of the conventional power grid to these communities. In some cases, technical and 

environmental constraints also have been factors that have prevented the full electrical service in these communities, especially 

those located on oceanic islands. 

For societies to have or attempt to maintain a sustainable development it is necessary a lot of effort in the discovery and use of 

renewable energy sources as well as in the increase of the efficiency in the processing of use these energy sources. In this aspect, 

the electric power generation based on solar photovoltaic and wind turbines technologies has been effective in distributed 

generation systems and also in standalone systems for supplying isolated communities [3], [4]. In standalone systems, those 

solutions have been shown appropriate for areas of difficult access, dispersed, with environmental restrictions or with a 

population formed by low-income people, even when these adverse characteristics represent a difficulty for the sustainability of 



 2

the designed generation system. Technical and operational troubles, and supply interruptions are difficult to be solved due to the 

non availability of technical assistance. The delay of remote assistance leads to long periods of lack of electrical service, causing 

loss of credibility in this kind of system [5], [6]. Thus, to overcome these difficulties, isolated systems must be projected taking 

into account reliability, minimizing the dependence of maintenance and human intervention, mainly because it is expensive and 

quite often not available. 

 

2. CRITICAL ISSUES TO FEASIBILITY 

 

The factors that most influence the reliability of standalone systems based on renewable energy are the following [5] - [8]: 

1. Protection coordination: inadequate coordination leads to increased number of customers without electric service due 

to faults; 

2. Distribution network in marine environment: distribution network exposed to aggressive marine environment are more 

vulnerable to mechanical failures and fatigue, phase- ground faults and hot spots in connections;  

3. Intermittent nature of renewable resources: solar and wind energies have an intermittent nature, contrasting with the 

need to provide continuous and reliable energy; 

4. Voltage regulation: the voltage of power distribution systems generated from intermittent sources must fulfill the power 

quality standards of conventional distribution systems ; 

5. Short circuits and faults in general: requires adequate protections; 

6. Power inverter:  the dependence of unique inverter is critical for feasibility; 

7. Maintenance:  distance, natural obstacles and population with poor economic conditions make difficult the maintenance 

of isolated systems. 

These critical issues must be addressed in order to make reliable the operation of isolated renewable energy based systems.  A 

practical example is the system installed on the Island of Lençóis in the northeast of Brazil. This autonomous system was 

projected to provide electrical power 24 hours a day for a community formed by approximately 390 inhabitants distributed in 90 

homes. At the end of 10 years of operation, the full power consumption of the island was estimated to be approximately 6,800 

kWh a month. This estimation takes into account the residential, small businesses, public agencies (school and health post) 

consumptions, and the consumption of a small ice factory with an average of 720 kg / day.   

Figure 1 shows a panoramic view of the Island. At right side, wind micro-turbines are observed. 
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The DC bus is the input of the inverter sub-system. It is formed by two three-phase inverters, each one with rated power of 20 

kVA, configured to work in parallel, sharing equally the load. It is important to notice that there isn’t any communication 

interface between these units or data exchange.  

The automatic management of the system is done by a programmable logic controller (PLC), which is responsible by the 

coordination of the parallel operation of all sources, with special attention to the system efficiency.   

 The generation system is installed in the Northeast of Brazil, coordinates 1o18’55.81’’S and 44o52’41.40’’O. The solar 

potential for electrical generation in this site is summarized in Table IV. These data were obtained from the Brazilian 

solarimetric map, available in [10]. The installed power of the solar sub-system is 21.06 kW. By considering the functional 

characteristics of the charger controller and the conversion system efficiency, the net maximum power of the solar sub-system is 

around 85% of the gross installed power, e.g., 17.69 kW. Multiplying this value by the monthly radiation in kWh/m2/day and by 

the number of days in a particular month, it is found an estimate of the monthly generated energy, as shown in last line of Table 

IV. 

 

TABLE IV 

Local solar potential 

Month Jan. Feb. Mar. Apr. Mar. June July Aug. Sept. Oct. Nov. Dec. Year 

Radiation in 
(kWh/m2)/day 

4.06 4.56 3.94 4.03 4.39 4.61 4.97 5.61 5.58 5.69 5.72 5.00 4.85 

Days in the 
month 

31 28 31 30 31 30 31 31 30 31 30 31 - 

Estimate of the 
generated 
energy in 

kWh/month 

2227 2259 2161 2139 2408 2447 2726 3077 2962 3121 3036 2742 31303 

 

The wind potential for electrical energy generation of the area under investigation is summarized in Table V. These data were 

obtained from the Atlas of the Brazilian Wind Potential, available in [11]. The estimated values for the mean power and the 

mean generated energy presented in Table V were calculated using the Weibull probability density and the turbines power curve, 

using the values of the mean wind speed and the Weibull K factor shown in the first two lines of this table [9], [12].  
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TABLE V 

Local wind potential 

Month Jan. Feb. Mar. Apr. May June July Aug. Sept. Oct. Nov. Dec. Year 

Mean Wind 
Speed in m/s 

6.25 6.25 5.07 5.07 5.07 7.44 7.44 7.44 8.99 8.99 8.99 6.25 6.94 

Weibull K 
Factor 

2.30 2.30 1.97 1.97 1.97 2.66 2.66 2.66 3.60 3.60 3.60 2.30 2.63 

Daily Mean 
Power in kW for 

1 turbine 
1.97 1.97 1.12 1.12 1.12 2.60 2.60 2.60 3.86 3.86 3.86 1.97 2.39 

Daily Mean Gen. 
Energy in  

kWh/day with 1 
turbine 

47.40 47.40 26.90 26.90 26.90 62.30 62.30 62.30 92.70 92.70 92.70 47.40 57.33 

Monthly Mean 
Gen. Energy in  
kWh/month for 

1 turbine 

1,469 1,327 834 807 834 1,869 1,931 1,931 2,781 2,874 2,781 1,469 20,908 

Monthly Mean 
Gen. Energy in  
kWh/month for 

3 turbines 

4,408 3,982 2,502 2,421 2,502 5,607 5,794 5,794 8,343 8,621 8,343 4,408 62,724 

 

Table VI shows the energy balance between the expected power generation and the expected energy consumption. The 

residential consumption was estimated considering the expected use of appliances, lighting, etc., by local residents. The 

productive consumption is related to the installation of a small ice factory to meet the needs of local fishermen. It is also included 

in the total energy consumption the energy used in public lighting.  As can be seen only in March, April, and May it is expected a 

deficit in the generation from the renewable sources. In these months part of the energy supply is expected to be from the diesel 

generator. The expected excess of energy in the other months must be discharged.  

TABLE VI 

Energy balance between estimated generation and estimated consumption 

Generated 
Energy in 

(kWh) 
Jan. Feb. Mar. Apr. May June July Aug. Sept. Oct. Nov. Dec. Year 

Month 1 2 3 4 5 6 7 8 9 10 11 12 - 

PV Solar 2,227 2,259 2,161 2,139 2,408 2,447 2,726 3,077 2,962 3,121 3,036 2,742 31,303

Wind 4,408 3,982 2,502 2,421 2,502 5,607 5,794 5,794 8,343 8,621 8,343 4,408 62,724

Total 
Generation 

6,635 6,240 4,663 4,560 4,909 8,054 8,520 8,871 11,305 11,742 11,379 7,150 94,027

Residencial 
Consumption 

4,134 4,139 4,144 4,150 4,155 4,160 4,165 4,170 4,175 4,181 4,186 4,191 49,950

Productive 
Consumption 

1,912 1,912 1,912 1,912 1,912 1,912 1,912 1,912 1,912 1,912 1,912 1,912 22,939

Total 
Consumption 

6,046 6,051 6,056 6,061 6,066 6,071 6,077 6,082 6,087 6,092 6,097 6,103 72,889

(Generation - 
Consumption) 

589 190 -1,393 -1,501 -1,157 1,982 2,443 2,789 5,218 5,650 5,282 1,048 21,138
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Table VII shows measurements for solar generation sub-system during the months of March to July of 2010. As can be seen 

the maximum power generation are of the same order of magnitude as the net installed power of the solar panel, which is 17.67 

kW (≈ 0.84 x 21 kW). It is also possible to see that the values measured for the Mean Generated Energy in each month have 

similar magnitude if they are compared with the estimated values shown in Table IV. 

TABLE VII 

Measures of power generation with the solar panel on first semester of 2010 

Month Mar. Apr. May June July 

Maximum power 
generated in kW 

16.66 16.98 15.88 16.40 17.08 

Daily Mean Power in kW  3.32 2.95 3.29 3.57 3.70 

Mean Generated Energy 
in kWh  

2,369.3 2,032.8 2,414.2 2,459.8 2,637.2 

 

Table VIII shows power and energy supplied by just one turbine of the wind generation sub-system from March to July of 

2010. The daily average power and average generated energy are relatively smaller than the respective values that were estimated 

for these variables in Table V. The main reason of this discrepancy was the abnormal wind pattern observed in this specific 

period as compared to previous years. Another reason for this discrepancy is related to the fact that in the estimation of power 

generated by one turbine, it was considered as if it was working alone. In the Lençóis Island Generation System, on other hand, 

the turbines work in parallel with the PV sub-system to charge the same battery bank. So, it is possible that in a particular time 

more energy is possible to be generated than what is possible to be stored in battery bank. In such conditions, the wind turbine 

sub-system or the PV sub-system or both generates less energy than what they are capable to generate. So, the value of daily 

mean power shoed in Table VIII can be smaller than what was estimated and shown in Table VI, without representing error in 

the estimate of generation capacity of wind turbines.  

 

TABLE VIII  

Measures of power generation with the wind power sub-system on first semester of 2010 

Month Mar. Apr. May June July 

Daily Mean Power in kW 
with 1 turbine  

1.35 0.86 0.89 0.90 0.80 

Mean Generated Energy 
by 1 turbine in kWh/day 

29.71 18.77 19.39 19.89 17.78 

 

The values of the residential energy consumption during the period from March to July 2010 are presented in Table IX. 

Fortunately, these values are relatively smaller than the respective estimated values shown in Table VI. This is good for the 



 11

system, because it is an indication that the system still has the capacity to supply an expansion of consumption in coming years. 

The reduced consumption compared to the estimated one is mainly due to an educational  program related to the efficient use of 

electricity by the community as well as due to the fact that the community needs to pay for energy consumed.  

TABLE IX 

Measures of residential energy consumption from March to July of 2011 

Month Mar. Apr. May June July 

Residential Energy 
Consumption in the first 
semester of 2011 in kWh 

2,908 3,283 3,221 3,436 3,480 

 

 

4. PARALLEL-CONNECTED INVERTERS 

 

In the project of the inverters, the goal was to develop a system that, besides highly reliable, it also had capacity for expansion 

as the loads increase without the need of alterations in the equipments already installed. To considerably increase the reliability 

and robustness of the system, it was adopted parallel operation of the inverters without communication among the units. The 

MTBF of inverters connected in parallel, in the N+1 or N+2 configurations, is greater than that of individual equipment, which 

demonstrates the reliability provided by this type of operation [13], [14]. For the N+1 configuration one inverter (N) is able to 

supply energy to the load. The other inverter (+1) is redundant. However, this reliability is only obtained through a system 

without communication, with units totally autonomous. 

Among the several forms used to connect voltage source inverters in parallel, it is possible to classify them in two groups: 1) 

the systems without communication and 2) the systems with communication. Parallelism with communication, as for instance in 

master-slave systems, uses an external cable for synchronization of the references and sharing of loads. In the case of a failure in 

that communication, the whole system can fail, unless another unit assumes the control. Seeking to avoid that type of problem, it 

was developed a system that works in parallel without any communication among the units. One of the methods more commonly 

implemented is known as Drooping Method [15] - [18]. 

 

5. SYSTEM MODELING 

 

The hardware design was based on a 20kVA, three-phase IGBT inverter. The output 60 Hz voltage was regulated based on a 

space vector pulse width modulation (SVPWM) with a 4 kHz switching frequency. An output low pass filter was used in each 

phase to eliminate the high frequency harmonic content due to the inverter switch action. Furthermore, a transformer was used to 
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Another important aspect is the start-up of the inverters after a fault or intentionally turns off for maintenance or any other 

reason. Because the system and the inverters have limited power the inrush current during the start-up could eventually shut 

down the inverters. The way the system was designed anytime the inverters have to be turned off for maintenance the diesel 

generator backup system is turned on. By the time the inverters are turned on the diesel generator is already supplying the load, 

and there is no inrush current that can cause the inverters shut down when the load is transferred from the diesel generator to the 

inverters. In case of a fault the following two procedures were tested to mitigate the problems caused by the inrush current:  

1) Anytime the system has to be started-up after a fault the following turn on sequence is applied: 

 Turn on the diesel generator and supply the load; 

 Turn on the first inverter; 

 Parallel the other inverters with the first one that was previously turned on; 

 Transfer the load to the inverter system; 

 Turn off the diesel generator; 

2) In the second procedure the load circuits are partitioned. In the case of the proposed system, there are four sectors (north, 

south, east, and west). The inverters are turned on in the same manner as in the first procedure, and the load is applied 

sequentially, sector by sector.  This second procedure is preferred since it is not necessary to turn on the diesel generator. 

The aerial distribution network should be based on insulated cables due to the aggressive marine environment.  The public 

illumination must also be protected against the hazardous environmental conditions. Due to limited energy resources the public 

illumination is based on compact fluorescent lamps. The solution implemented in the proposed system is presented in Fig. 9.  
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At the second year (2009), no supply interruptions have been registered, leading to SAIFI =0 and SAIFI =0.  These good 

reliability indices are attributed to the good automation degree of the system and to the small scale distribution network as well, 

adequately prepared for marine environmental conditions. Table XI summarizes the indices of the system operation over the 

period 2009 - 2010. 

 

TABLE XI 

System operation indices 

System Operation 

 SAIFI SAIDI Renewable energy 

operation 

Diesel 

operation 

1st year (3936 hours) 3 72 99.390% 0.609 % 

2nd year (8760 hours) 0 0 95.43% 4.56% 

3rd year (8760 hours) 2 48 92.30% 7.70% 

 

The current and voltage measured in a typical day of December/2009 are showed in Fig. 16, which shows the RMS values of 

currents and voltages measured in a period of approximately 10 hours. It can be observed that the system is unbalanced and that 

the currents have high harmonic content since the neutral current is high.  Even with this high current harmonic content the 

variations of the voltages RMS values are within ± 2% of the rated value (220 V). 

The total harmonic distortions of the currents (THDi) and voltage (THDv) measured in the same day of Fig. 16 are presented in 

Fig. 17. It can be shown the high THDi (Fig. 17a) caused by the non-linear loads (fluorescent lamps, TVs, and refrigerators). This 

distortion and the load unbalance cause a THDv > 5% (Fig. 17b) during some hours. 

To bring the THDv to levels within the IEEE recommended practices (THDv < 5%) it was tested to reduce the amount of 

unbalance to levels below 50% among the phases. Then part of the load was relocated among the phases. By just doing this 

simple task the THDv was improved as can be seen in Fig. 18.  These data were measured in February/2010 by the time there was 

another travel to the island. Even though the data was measured in a different day the results were taken in time intervals were it 

was observed the worst THDv.  
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